Structural Determinants of Transmembrane β-Barrels.
نویسنده
چکیده
The recognition of β-barrel membrane proteins based on their sequence is more challenging than the recognition of α-helical membrane proteins. This goal could benefit from a better understanding of the physical determinants of transmembrane β-barrel structure. To that end, we first extend the IMM1 implicit membrane model in a way that allows the modeling of membrane proteins with an internal aqueous pore. The new model (IMM1-pore) gives stable molecular dynamics trajectories for three β-barrel membrane proteins of different sizes and negative water-to-membrane transfer energies of reasonable magnitude. It also discriminates the correct fold for a pair of 10-stranded and 12-stranded transmembrane β-barrels. We then consider a pair of β-barrel proteins: OmpA, which is a membrane β-barrel with hydrophobic residues on the exterior and polar residues in the interior, and retinol binding protein, which is a water soluble protein with polar residues on the exterior and hydrophobic residues in the interior. By threading the sequence of one onto the structure of the other we make two pairs of structures for each sequence, one native and the other a decoy, and evaluate their energy. The energy function discriminates the correct structure. By decomposing the energy into residue contributions we examine which features of each sequence make it fold into one or the other structure. It is found that for the OmpA sequence the largest contribution to stability comes from interactions between polar residues in the interior of the barrel. The major factor that prevents the retinol binding protein sequence from adopting a transmembrane fold is the presence of polar/charged residues at the edges of the putative transmembrane β-strands as well as the less favorable interior polar residue interactions. These results could help design simplified scoring functions for fold recognition and structure prediction of transmembrane β-barrels.
منابع مشابه
Predicting giant transmembrane β-barrel architecture
MOTIVATION The β-barrel is a ubiquitous fold that is deployed to accomplish a wide variety of biological functions including membrane-embedded pores. Key influences of β-barrel lumen diameter include the number of β-strands (n) and the degree of shear (S), the latter value measuring the extent to which the β-sheet is tilted within the β-barrel. Notably, it has previously been reported that the ...
متن کاملRelation between sequence and structure in membrane proteins
MOTIVATION Integral polytopic membrane proteins contain only two types of folds in their transmembrane domains: α-helix bundles and β-barrels. The increasing number of available crystal structures of these proteins permits an initial estimation of how sequence variability affects the structure conservation in their transmembrane domains. We, thus, aim to determine the pairwise sequence identity...
متن کاملTMBB-DB: a transmembrane β-barrel proteome database
MOTIVATION We previously reported the development of a highly accurate statistical algorithm for identifying β-barrel outer membrane proteins or transmembrane β-barrels (TMBBs), from genomic sequence data of Gram-negative bacteria (Freeman,T.C. and Wimley,W.C. (2010) Bioinformatics, 26, 1965-1974). We have now applied this identification algorithm to all available Gram-negative bacterial genome...
متن کاملOMPdb: a database of β-barrel outer membrane proteins from Gram-negative bacteria
We describe here OMPdb, which is currently the most complete and comprehensive collection of integral β-barrel outer membrane proteins from Gram-negative bacteria. The database currently contains 69,354 proteins, which are classified into 85 families, based mainly on structural and functional criteria. Although OMPdb follows the annotation scheme of Pfam, many of the families included in the da...
متن کاملRanking models of transmembrane β-barrel proteins using Z-coordinate predictions
MOTIVATION Transmembrane β-barrels exist in the outer membrane of gram-negative bacteria as well as in chloroplast and mitochondria. They are often involved in transport processes and are promising antimicrobial drug targets. Structures of only a few β-barrel protein families are known. Therefore, a method that could automatically generate such models would be valuable. The symmetrical arrangem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical theory and computation
دوره 1 4 شماره
صفحات -
تاریخ انتشار 2005